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Abstract. Monte Carlo simulations on the SK model have been done to investigate aging
processes after a rapid quench fromT = ∞ to the spin-glass phase. Taking care of time
ranges of simulation, we examine time evolutions of energy of the system, Parisi’s overlap
distribution function, auto-correlation and clones-correlation functions, distribution functions of
the two correlations, and magnetization induced by the field applied after a certain waiting time.
The data simulated exhibit a rich variety of aging phenomena. Most of them can be interpreted
in a unified way, though qualitatively, by the scenario ofgrowth of quasi-equilibrium domains
which we have recently introduced. The results are consistent qualitatively with asymptotic
behaviours of some of the basic assumptions and their results in recent analytical theory on the
same SK model, so long as the limiting procedures in finite systems are taken properly. Also
they suggest that a basin of attraction of one dominant pure state spans almost an entire phase
space of the system with a common time-reversal symmetry.

1. Introduction

Since the first observation by Lundgrenet al [1] aging phenomena in spin glasses have been
extensively studied [2]. They are expected to reveal the nature of the low-temperature spin-
glass phase which has yet to be settled despite nearly two decades of dispute. One of the key
concepts on aging phenomena recently introduced by Bouchaud [3] is theweak-ergodicity
breaking (WEB). It was introduced during the argument on his trap model where many
metastable states, or ‘traps’, exists. Depths of the traps are distributed continuously in such
a way that the average time for the system to escape from them by thermal activation process
is infinite; or, it takes an infinite time for the system to equilibriate. Subsequently the WEB
picture has been incorporated in many works on aging phenomena in mean-field spin-glass
models as well as in some related models [4–8]. These works have revealed that the WEB
concept is much more general than initially proposed; it can be applied to aging phenomena
in a system even without metastable states [9]. The WEB picture is now represented in
terms of the double-time (spin) auto-correlation functionC(t, t ′) ≡ N−1∑

i Si(t)Si(t
′) as

follows

∂C(t, t ′)
∂t

6 0 and
∂C(t, t ′)
∂t ′

> 0 (t > t ′) (1a)
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lim
t−t ′→∞

lim
t ′→∞

C(t, t ′) = qc (> 0) (1b)

lim
t→∞C(t, t

′) = 0 for a fixedt ′(<∞) (1c)

whereqc is a certain constant.
Various simulations which reproduce some aspects of the experimentally observed aging

phenomena have already been reported [10–13]. But they are not yet satisfactory to be
able to understand the phenomena in a unified way. Since the recent phenomenological
and theoretical arguments mentioned above, as well as recent analyses on experiments
[14, 15], are more or less based on the mean-field picture of spin glasses, we believe it
is worth examining aging phenomena in the mean-field spin-glass model in more detail
by simulations [16]. In the present work therefore we have performed Monte Carlo (MC)
simulation on the SK model [17], whose equilibrium properties are well understood [18].
Its purpose is to obtain various information on its aging phenomena, including those which
are related to the above-mentioned key concept.

The aging phenomena we are concerned with are non-equilibrium processes toward
equilibrium observed in macroscopic systems in long but finite intervals of time. Since, on
the other hand, the present simulations are performed only on finite systems withN spins,
we have to take care of their time range. Suppose the system has a continuous distribution
of relaxation times with the maximumtMerg(N, T ) which may depend also on temperature
T , and whose systematic dependence onN is known. The WEB is expected to occur in
such systems with limN→∞ tMerg(N, T ) = ∞. Therefore simulations on finite systems have
to be done in the time range oft . tMerg(N, T ) otherwise expected aging phenomena in the
thermodynamic limit are obscured by processes with complete equilibration.

According to Parisi’s picture [18] on the spin-glass phase of the SK model in equilibrium,
there are many pure states which are separated from each other by insurmountable free-
energy barriers. More explicitly, it was argued that in systems with largeN two types of
the free-energy barriers exist: one between the pure states with a common time-reversal
symmetry, and the other between those with opposite time-reversal symmetries [19, 20]. The
characteristic times,tSerg(N, T ) and tLerg(N, T ), needed to surmount respectively the former
and latter barriers are given by (see figure 2)

ln tSerg(N, T ) ∝ N1/4 and lntLerg(N, T ) ∝ N1/2. (2)

Therefore we have to set at leastterg(N, T ) . tSerg(N, T ), terg(N, T ) being the upper
boundary of the time range after a rapid quench, where proper aging phenomena are observed
in finite systems. In the present work we call such a limited time interval anaging range,
and a portion of phase space that the system explores within that interval a‘pure state’.

The fact thatterg(N, T ) is finite in finite systems makes it rather difficult to compare
results of simulations on finite systems with the basic assumptions and their results in the
theoretical arguments mentioned above. In the latter, for example in equations (1b, c), the
limit N → ∞ is taken before the limitst and/or t ′ → ∞. One of the simplest ways to
examine such limits by simulations is to examine them only through quantities which are
independent ofN . That is, however, practically hard to do. Instead, an efficient strategy
is to analyse aging phenomena in finite systems in detail and to extrapolate the obtained
(N -dependent) results toN → ∞. By such analyses we will argue that limt ′→∞ limN→∞
in the theories corresponds to limN→∞ limt ′→terg(N,T ) in the simulation. We also emphasize
that the study of aging phenomena in finite systems is of importance by itself since it may
provide us with information on the ‘interrupted aging’ in some systems [3, 12].

In the present work we simulate time evolution of various quantities after the quench;
energy of the system, Parisi’s overlap distribution function, auto-correlation and clones-
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correlation functions [16, 21, 22], and distribution functions of the two correlations. The
magnetization induced by the field applied after a waiting timetw is also investigated. It has
turned out that the data simulated exhibit a rich variety of aging phenomena. They indicate
complexity of the rugged free-energy landscape within the ‘pure state’. It is expected to
have many free-energy barriers of finite heights which are surmountable within the aging
range introduced above. Most of our simulated results can be interpreted in a unified way,
though qualitatively, by the scenario ofgrowth of quasi-equilibrium domains(GQED) which
we have recently introduced [23, 24].

In [24] we have solved numerically the master equation of the SK model but of
small sizes (N 6 12), and looked for time evolution of the probabilities of occurrence
pα(t; T ) after rapid quench to a certain temperatureT below Tc, whereα specifies the
TAP solutions atT = 0 (which we call here ‘states’). It is found that the ratios,
rα(t; T ) ≡ pα(t; T )/pα(∞; T ) with pα(∞; T ) being the equilibrium Boltzmann weight,
exhibit a tree structure when they are plotted againstt ; at a certain timerα(t; T ) a few
states coincide with each other (or, leaves merge with a branch), at a later time a few
such branches merge with a bigger branch, and finally all branches merge with a trunk
(rα(t; T ) = 1 for all α). This means that at and after the stage where a few states merge
to a branch these states are in quasi-equilibrium in the sense that their relative weights
coincide with those in equilibrium. We have called the portion of phase space associated
with these states the quasi-equilibrium domain, and an aging process represented by the
aforementioned tree the GQED process. One of the main purposes of the present work is
to ascertain this GQED scenario in the SK model of larger sizes by MC simulation.

Besides the GQED scenario the present results suggest that the basin of attraction of
one ‘pure state’ spans an almost entire phase space with a common time-reversal symmetry.
We call this feature thedynamic dominant pure-states picture. In view of the equilibrium
properties of the SK model, on the other hand, there is the argument [25] that among many
pure states only a few (even one) of them dominate the Gibbs–Boltzmann measure. We
call this aspect thestatic dominant pure-states picture. Our simulated data suggest that the
properties inside the dynamic dominant pure state almost coincide with those of the static
dominant pure state.

In the next section the model and method of our simulations are briefly explained. In
section 3 we present the results of the simulations which are interpreted by our GQED
scenario in section 4. In these sections the following notations are used for the double-time
functions such asC(t, t ′) in equations (1);t = τ + tw, and t ′ = tw. The final section is
devoted to the concluding remarks.

2. Model and method

By means of the standard heat-bath method of the MC simulation we have studied the±J
SK model with mean zero and variance(N − 1)−1/2 [26]. The system sizes examined are
N = 32–2048, particularlyN = 128, 512 in detail. The present work analyses mainly
the aging processes after rapid quenches fromT = ∞ to T below the spin-glass transition
temperatureTc (= 1 in the limitN →∞). Simulation of this process is to simply perform
a MC run atT starting from a random spin configuration. Physical quantities are obtained by
taking the average over suchM independent MC runs for each realization of{Jij } (sample)
and over theNs samples. Those at timet (in units of 1 MC step per spin) in each MC run
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are evaluated by means of the following short time average,

A(m)(t) = 1

1t + 1

t∑
t ′=t−1t

a(m)(t ′) (3)

wherea(m)(t ′) is the value of quantityA at stept ′ of themth MC run, and1t � t (for
example1t = 0 for t < 16 and 511 fort > 213). In the present work we putM = 10 and
Ns = 40–2000 depending onN .

Most of our simulations are performed in the aging range mentioned in the previous
section. Here we make a further comment on a cut-off of the aging range in the shorter
side. The time range of simulations should not be too short in order to distinguish aging
phenomena peculiar to spin glasses from certain initial transient processes expected to exist
in any system. We denote a timescale of this short cut-off astq.e.. Its explicit value, as
well as that ofterg(N, T ) mentioned in section 1, will be discussed below referring to our
simulated data.

3. Results

3.1. Energy and Parisi’s overlap distribution

Let us first investigate the time evolution of the energyE(t) after the quench att = 0. As
shown in figure 1(a), the energy per spin drops rapidly and then gradually saturates to the
N -dependent equilibrium valueEeq/N . Interesting information is obtained when we look at
how the extensive energyE(t) approachesEeq. In figure 1(b) we show1E(t) ≡ E(t)−Eeq

whereEeq is approximated byE(tmax) with tmax being the (N -dependent) maximumt of
the MC observation. The timetEerg(N, T ), defined by1E(tEerg)

∼= T , is shown in figure 2. It
has the sameN -dependence as that oftSerg(N, T ) of equation (2) obtained previously [19],
although the proportional constants are different. In the present work we adopttEerg(N, T )

as the upper boundary of the aging range, orterg(N, T ) ' tEerg(N, T ). In figure 1(c)
1E(t)/N versust is plotted double logarithmically. The data ofN = 512, 1024, and
2048 almost coincide with each other in the ranget . 2000, indicating that slow decay in
1E(t)/N(∝ t−α, α ' 0.55) is a genuine property in the aging range of the system even
with N = ∞. (The deviation of data ofN = 2048 (diamonds) from the common curve at
larger t is considered due to a poor estimate ofEeq.) Similar slow dynamics in1E(t)/N
has been reported in other model systems [21, 27].

In figure 3 the time evolution of Parisi’s overlap distribution functionsP(q; t) is
demonstrated for systems withN = 128 at T = 0.4. Hereq is one ofM(M − 1)/2
overlaps of magnetization configurationsq(t) = N−1 ∑

i m
(k)
i (t)m

(l)
i (t) wherem(k)i (t) is

evaluated by equation (3) witha = Si . In the figure the heavy broken curve represents
PRSB(q), i.e. P(q) in equilibrium and in the thermodynamic limit which is evaluated by
solving numerically Parisi’s equation [28]. The position of its delta peaks are specified
±qEA; the self-overlap parameter [18]. As already reported by Bhatt and Young [20],
P(q; t) evolves from a single Gaussian centred atq = 0 at t = 0 to a structure with double
peaks (but of significant widths) similar toPRSB(q) at large enought . In the present analysis
we determinetLerg(N, T ) as the time at whichP(q ' 0; t) converges toPRSB(q ' 0) and
we also show it in figure 2. We see in figure 3 that att = 512' tEerg(N = 128, T = 0.4),
P(q; t) already exhibits the double peaks aroundq = ±qEA, though the peak position is
shifted a little fromqEA due to the finite-size effect. It is also noted that the peak atq ' 0
still remains.
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Figure 1. Time evolution of energy atT = 0.4. (a) Energy per spin in systems with
N(Ns) =32(2000), 64(2000), 96(2000), 128(1000), 192(600), 256(500), 512(200), 1024(40),
and 2048(50) from top to bottom. (b) Extensive energy differenceE(t) − Eeq (= 1E(t)) for
N = 32–512. The data shown with broken line represent1E(t)+EB(t) for N = 512 (see text
for definition ofEB(t). (c) Double-logarithmic plot of1E(t)/N versusta. N andNs are the
same as in (a), but here from bottom to top.

3.2. Auto-correlation function

In figure 4(a) we show typical data of the auto-correlation functionC(τ + tw, tw). It is
obtained atT = 0.4 of systems withN = 512 in the ranget = τ + tw . 3× 104. One
can see thatC(τ + tw, tw) satisfies equation (1a), i.e. one of the WEB conditions. Also the
data exhibit crossover behaviour from relatively ‘fast’ decay inτ < tw (except for initial,
very rapid decay) to relatively ‘slow’ decay inτ > tw (note that ‘fast’ and ‘slow’ here
are the decay rates with respect tot , while those with respect to logarithms oft as seen
in figure 4(a) appear oppositely). The behaviour is common toC(τ + tw, tw) simulated
in various systems [10–12, 29], and is interpreted as a crossover from quasi-equilibrium to
out-of-equilibrium behaviour.

An interesting feature becomes clear if we plotC(τ + tw, tw) against ln(τ/tw), as shown
in figure 4(b). As first pointed out by Baldassarri [16],C(τ+tw, tw) with differenttw, except
for tw = 214, cross almost at a pointτ ' tcrs. This behaviour is certainly different from
those ofC(τ + tw, tw) observed in the previous works [11, 12, 29], whoseC(τ + tw, tw) with
different tw’s in the out-of-equilibrium range are rather well scaled to a single curve when
plotted againstτ/tw. We also note that lntcrs ' ln tw and that the value ofC(tcrs+ tw, tw)
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Figure 2. The system-size (N ) dependence
of characteristic relaxation times related to aging
processes in the SK model atT = 0.4 for
N 6 256; tLerg(N, T ) and tSerg(N, T ) of equation (2)

and tEerg(N, T ) determined by1E(tEerg) = 0.5
(= 1.2T ) from figure 1(b). The full line is
ln(tSerg(N, T )) = 2.56N1/4 − 0.66 due to [19]. The

area belowtEerg(N, T ) (∼ terg(N, T )) is the aging
range introduced in the present work.

Figure 3. Parisi’s overlap distribution functionP(q; t)
for N = 128, T = 0.4. It is normalized as∫ 1
−1P(q; t) dq = 1. The data aret =16, 64, 512, 4096

and 32 768 from top to bottom at aroundq ' 0. The
heavy broken curve representsPRSB(q).

(' 0.62) is rather closer to 1− T = q̄ (= 0.6) thanqEA (∼= 0.75), whereq̄ = ∫ 1
0 q(x) dx

is Parisi’s order parameter in equilibrium [18].
We ascertain that the above crossing feature ofC(τ + tw, tw) is a genuine property

of aging processes in the present system by the inspection ofC(t, t ′ = t/2) which can be
simulated by a single aging process. As shown in figure 5C(t, t/2) for variousN andT are
nearly independent oft andN in the ranget1 . t . t2(N, T ). Heret2(N, T ) is a time around
whichC(t, t/2) starts to decrease from its nearly constant value, and we have checked that
it coincides with tEerg(N, T ) within logarithmic accuracy. On the other hand, the shorter
timescalet1 is regarded astq.e. (mentioned in section 2). The near constancy ofC(t, t/2)
implies thatC(τ + tw, tw) with different tw’s have a nearly common value at ln(τ/tw) ' 0.

Let us go back to figure 4(b) and discuss the deviation of thetw = 214 curve from
the crossing behaviour. In fact it indicates that the system reaches equilibrium (but
with time-reversal symmetry breaking) at thistw;C(τ + tw, tw) is now the function of
only τ (time-translational invariant) so that, when plotted against ln(τ/tw), it shifts in
parallel to the left. This feature is seen more clearly inC(τ + tw, tw) in cases with
smaller N and/or higherT within the range of our simulations. SinceC(τ + tw, tw)
of tw = 213 with N = 512, T = 0.4 exhibits the crossing behaviour (not shown in
figure 4(b)), we obtain 213 . terg(512, 0.4) . 214, which is compatible with the specification
terg(N, T ) ' tEerg(N, T ) in section 3.1.
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Figure 4. Auto-correlation functionsC(τ + tw, tw) with tw = 22n (n = 2–7) plotted againstt
(a) and t/tw (b) (T = 0.4, N = 512,Ns = 100).

Figure 5. Auto-correlation functionsC(t, t/2) for
someT andN .

3.3. Clones-correlation function

We have also investigated the clones-correlation functionQ(τ + tw, tw) [16, 21, 22]. It is
the correlation of two configurations starting from an identical one which has evolved up
to t = tw, but are evolving by means of two independent MC runs (with different sets of
random numbers) att > tw. A typical result is shown in figure 6 forT = 0.4, N = 512. As
found also by Baldassarri [16],C(τ + tw, tw) andQ(τ + tw, tw) cross at lnτ ∼ ln tw. Their
values at the crossing are again closer toq̄ independently oftw. A more remarkable feature
seen in the figure is that asτ → tEerg(N, T ), Q(τ + tw, tw) with fixed tw tend to saturate to
constant values which depend ontw. It is also noted (not shown) thatQ(τ + tw, tw) plotted
against ln(τ/tw) also cross nearly at a point similarly toC(τ + tw, tw) in figure 4(b).
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Figure 6. Clones-correlation functionsQ(τ + tw, tw) with the same parameterstw, T , N , Ns

as in figure 4. Auto-correlation functionsC(τ + tw, tw) are also shown by the lines with open
symbols. The arrow indicatest = terg(N, T ).

Figure 7. Induced magnetizationm(τ ; tw) (symbols
with full lines) and mC(τ ; tw) (broken lines) of
equation (4) withtw = 22n (n = 2–7) plotted against
t/tw (T = 0.4, h = 0.04,N = 512,Ns = 100).

3.4. Fluctuation-dissipation theorem

In order to get a further insight into aging processes we have simulated the magnetization
m(τ ; tw) induced by the fieldh which is switched on att = tw. The result for
T = 0.4, N = 512 and withh = 0.04 is drawn against ln(τ/tw) in figure 7.mC(τ ; tw) are
also shown by broken curves in the figure, defined by

mC(t; tw) = h{1− C(t + tw, tw)}/T . (4)

The fluctuation-dissipation theorem (FDT) tells us that, in equilibrium and for an
infinitesimally smallh, m(τ ; tw) andmC(τ ; tw) are independent oftw andm(τ) = mC(τ )

holds. We see in figure 7 that, as observed in other model systems [10, 13, 29],m(τ ; tw) ∼=
mC(τ ; tw) holds in the time rangeτ . tw with tw larger than a certain value which
corresponds totq.e., the initial transient time mentioned in section 1.
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4. Discussions

4.1. Scenario of growth of quasi-equilibrium domains

In order to interpret the above results of our simulations, let us first remind the reader
of the following properties of the SK model in equilibrium. It is known that the TAP
equation [31] of the SK model has a huge number of solutions in the spin-glass phase
[32]. At T = 0 energies of one spin-flip stable states have a Gaussian distribution centred
at E/N ' 0.5 with variance proportional toN−(1/2) [32, 33]. At finite temperatures it
is pointed out that the TAP solutions lie just on the boundary of the validity condition
of the TAP free-energy itself [34]. But neither further details of their stability nor their
corresponding free-energy distribution have been well established. In the present argument,
therefore, we call the solutions ‘states’ simply. In equilibrium only a very limited number of
the states have significant probability weightsPα(∝ exp(−Fα/T )) whereFα is the TAP free
energy of theαth state [25] (thestatic dominant pure-states picturementioned in section 1).
Associated with such lowest free-energy states are limited portions of phase space which are
separated by free-energy barriers described by equation (2). The aging processes simulated
in the present work are interpreted to reflect the free-energy landscape of such local regions
centred at each lowest free-energy state. We may identify these regions to the ‘pure states’
introduced in section 1.

Based on the above assumption we briefly explain our GQED scenario, introduced in
section 1. Each ‘pure state’ contains a huge number of the TAP solutions (states), as
schematically shown in figure 8. The lower their energies, the less the number of the states
is. (In the present work we do not explicitly refer to entropy effects which have not been
evaluated in the present simulation.) After the rapid quench (associated with the initial
transient timetq.e.) the system is found in one of the huge number of states with a relatively
higher energy, from which it starts to look for lower and lower energy states either by
thermal activation processes or possibly by finding one of the paths without free-energy
barriers [9]. In this context let us introduce here an ‘effective barrier energy’EB(t) simply
by EB(t) ' T ln t : by this EB(t) we suppose processes yielding relaxation times of the
order of exp(EB(t)/T ) without specifying their mechanism(s).

Let us then suppose that at timet = tw1 the system reaches a certain state, sayS1 in
figure 8. In a time interval oft = tw1+ τ with τ � tw1 the system is fluctuating in a local

Figure 8. Schematic representation of the
rugged energy structure of one ‘pure state’
of the SK model. The dots represent the
TAP solutions (or statesS1, S2, . . . , S∞) and
the shaded areas represent quasi-equilibrium
domains (R1, R2, . . .).
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regionR1 centred atS1 (the shaded area in figure 8), thereby it is expected to visit states in
the region with frequencies according to their relative Boltzmann weights [24]. We call such
regionsR1 quasi-equilibrium domains. As time goes on another interval of ordertw1, i.e.
at t = tw2 ' 2tw1, the system surmounts effective energy barrierEB(tw1) and finds a lower
energy state, sayS2 in figure 8. This corresponds to entering into the out-of-equilibrium
range of the waiting timetw1. The stateS2 is, in turn, associated with the quasi-equilibrium
domainR2 of the waiting timetw2 which is larger thanR1. The quasi-equilibrium domain
grows with time until it exhausts the whole ‘pure state’, or the system reaches the lowest
energy stateS∞ in figure 8 (which takes an infinite time ifN = ∞). This is our GQED
scenario.

The GQED scenario explains straightforwardly the following results in the aging range
obtained in the present MC study: (1) the monotonic decrease of the energy of the
system (1E(t) in figures 1(b) and (c); (2) the crossover from quasi-equilibrium to out-of-
equilibrium behaviour at aroundτ ∼ tw seen inC(τ + tw, tw) of figure 4; (3) the apparent
FDT at τ . tw demonstrated in figure 7, and (4) the behaviour of the clones-correlation
shown in figure 6 which is explained as follows. Suppose the clones are created att = tw1

from a spin configuration nearS1 in figure 8. Then atτ & tw1, the clones visit more
frequently near the same stateS2 whose relative Boltzmann weight is largest in the larger
domainR2. The Hamming distance between them is then considered to be smaller than that
betweenS1 and S2 which determines predominantly the value of the corresponding auto-
correlation function. This meansQ(τ + tw1, tw1) > C(τ + tw1, tw1) at τ & tw1 as observed
in the simulation.

Now let us go into further details of item (1). In figure 1(b) the value1E(t)+ EB(t)

for N = 512 is also shown, whereEB(t) is the effective energy barrier introduced
above. From the figure we can extract the following two characteristic stages of the aging
process; one is the early stage withEB(t) � 1E(t), and the other is the latest stage with
EB(t) � 1E(t). The latter stage appears only in finite systems. The aging process in
this stage is considered to be dominated by thermal-activated ones sincetEerg(N, T ) itself
roughly obeys the Arrhenius law: lntEerg(N, T ) ∝ N1/4/T (which will be reported separately
elsewhere). Now let us introducetFerg(N, T ), a crossover value above which the finite-size
effects in aging phenomena become significant. One of its possible estimates is given by
the conditionEB(t

F
erg(N, T )) ' 1E(tFerg(N, T )) and is about 1.5× 103 for T = 0.4 and

N = 512. At the moment we cannot specify definitely the aging process in the early stage
(at tq.e. . t . tFerg(N, T )), since we do not know details of the TAP solutions with relatively
high energies as mentioned before. In this context we note that as seen in figure 1(c)
the power-law behaviour of1E(t)/N seems to hold almost in the whole aging range,
up to rather close totEerg(N, T ), without any noticeable indication of the crossover around
tFerg(N, T ). The same feature, i.e. aging phenomena exhibit no distinguishable difference in
the aforementioned two stages, is seen also inC(τ + tw, tw) andmC(τ ; tw) in figures 4(b)
and 7, respectively. These results obtained within the accuracy of our simulation may
indicate that either we have to puttFerg(N, T ) ' terg(N, T ) (the finite-size effect appears
almost suddenly just atterg(N, T )), mechanisms of relaxation processes are common in
the two stages, or aging phenomena are insensitive to details of relaxation mechanisms.
Which is the case is not clear at the moment. In any case, however, it is natural to
interpret the limit t ′ → ∞ in equation (1b) as corresponding to, in a finite system, the
limit tw → terg(N, T )(' tEerg(N, T )), at which the system is equilibrated as pointed out in
figure 4(b).

The simulated results of items (2) and (3) have to be compared with equation (1b) and the
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Figure 9. Autocorrelation functionC(τ + tw, tw)
plotted againsttw. The data points of the same
symbols are those of the samex ≡ tw/(τ+tw) but of
varioust andtw. The full curves represent the fitting
curve for each data set of commonx due to the
empirical formula explained in the text. The value

of x varies asx = 211

2+211 ,
210

2+210 , . . . ,
28

2+28 from the
top to the bottom line. The inset shows the resultant
fitting parameterbx (see text) of variousx together
with a fitting line (full curve) which represents a
linear fit of them.

recent arguments [5, 14] that bothC(τ+tw, tw) andm(τ ; tw) consist of two parts, equilibrium
and aging ones, and thatin the limit tw →∞ the FDT holds only for the equilibrium parts
which depend onτ alone. Our data with the largesttw (= 214 & terg(N, T )) in figure 7
indicate that the FDT holds in the whole aging range(τ . terg(N, T )). Combined with our
interpretation of the limitt ′ → ∞ mentioned just above, this result is consistent with the
argument in [5, 14]. Our data indicate further; the apparent FDT holds between the whole
C(τ + tw, tw) andm(τ ; tw) even for finitetw(< terg(N, T )) for which C(τ + tw, tw) depend
not only onτ but also ontw (see figure 4(a)). The latter means that the nature of overall
fluctuation within each quasi-equilibrium domain differs between the domains and from true
equilibrium. Still C(τ + tw, tw) andm(τ ; tw) obey the apparent FDT. This is one of the
main reasons why we propose the GQED scenario from the present MC analysis.

The check of the WEB condition of equation (1b) is further difficult since we need the
extrapolation ofτ →∞ keeping the conditionτ � tw (. terg(N, T )). One of the ways to
estimateqc in equation (1b) is shown in figure 9, where we plotC(τ+tw, tw) againsttw. The
data for a fixedx ≡ tw/(τ+ tw) are well fitted to an empirical form ofCx(tw) = axt−1/4

w +bx
as shown by the full curves in the figures, whereax, bx are fitting parameters. In the inset
of figure 9 we showbx = Cx(∞) for variousx. The value limx→1 bx ∼= 0.70 is an estimate
for qc. It is considered to be a lower bound forqc, sincex → 1 implies the extrapolation
of tw far beyond the aging range. Although analysis here is only onN = 512, we consider
this estimate to be compatible with the theoretical prediction ofqc = qEA [5]. It is also
noted that this value is larger thanC(τ + tw, tw) at the crossing shown in figure 4(b).

4.2. Distribution functions of clone- and auto-correlations

The time evolution of distribution functionsP(Q; τ, tw) withQ(τ)=N−1∑
i m

[1]
i (τ )m

[2]
i (τ )

shown in figure 10(a) further supports the scenario of the clones-correlation (item (4)).
Herem[k]

i (τ ) is evaluated by equation (3) whosea on the r.h.s. isSi of the kth clone.
The distribution is therefore obtained fromMNs data points ofQ(τ). A sharp peak of
P(Q; τ, tw) at τ � tw located aroundQ ' qEA indicates simply that the clones are not yet
separated enough and are fluctuating near the lowest energy state in the quasi-equilibrium
domain of waiting timetw. Around τ ' tw the height of the peak decreases and its width
increases. This is interpreted as the clones now tending to escape statistically independently
of each other from the domain oftw. Interestingly, atτ = 215 & terg(N, T ) � tw the peak
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Figure 10. (a) Distribution functions of clones-correlationP(Q; τ, tw) corresponding to the
curve with tw = 64 in figure 6. The broken curve without symbols representsPRSB(q) (also in
figures 10(b), (c), and 11). (b) Comparison ofP(Q; τ, tw) with N = 128, 512 andtw = 64: the
full curve with circles representsP(Q; τ = 512' tEerg, tw) of N = 128, the broken curve with

trianglesP(Q; τ = 215 & terg, tw) of N = 512, and the light full curveP(Q; τ = 215 ' tLerg, tw)

of N = 128. (c) Comparison ofP(Q; τ ∼ terg, tw) (broken curve with squares),P(q; t ' terg)

(full curve), andPRSB(q) for N = 512 andT = 0.4. In this figureP(q) are normalized as∫ 1
−1P(q) dq = 2.

nearQ ' qEA sharpens again though its height does not recover very much. This result
implies that in equilibrium atτ & terg(N, T ) the clones reach the same lowest energy state
with a large probability, and thatQ(τ + tw, tw) for fixed tw converge to certain finite values.
The latter is in fact the case as we have already seen in figure 6;Q(τ + tw, tw) almost
saturate to certain constants. Correspondingly, the shape ofP(Q; τ, tw) becomes a little
dependent onτ at τ & terg(N, T )).

In order to examine theN -dependence of the above characteristic feature in the clones-
correlation, we show in figure 10(b) P(Q; τ, tw) at τ ∼ terg(N, T ) for N = 128 and 512
both with tw = 64. The two almost coincide with each other. The small difference in the
peak positions nearQ = qEA is attributed to the finite-size effect. Naive extrapolation of
these results toN → ∞ is limτ→∞Q(τ + tw, tw) > 0 for a fixed tw (< ∞). Thus the
aging process within one ‘pure state’ of present interest belongs to type I by means of the
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Figure 11. Distribution functions of auto-correlation
P(C; τ, tw) corresponding to the curve withtw = 64
in figure 6. The curve without symbols represents
PRSB(q).

classification introduced by Barratet al [22].
In figure 10(b) we also show, by the light full curve,P(Q; τ, tw) at τ ' tLerg(N, T )

for N = 128. One sees that a small peak starts to develop not aroundQ = 0 but around
Q = −qEA. This result is interpreted as follow. When one of the clones surmounts the
energy barrier between the phase spaces with different time-reversal symmetry, it goes
down and situates itself near the counterpart ofS∞ within a time interval ofterg(N, T )

(� tLerg(N, T )).
In contrast toQ(τ + tw, tw) discussed above,C(τ + tw, tw) in figure 6 does not exhibit

tendency of the saturation to certain finite values within the aging range of the present
concern. Although it neither completely vanishes in the same time range, we expect that
the weak-ergodicity breaking condition of equation (1c) holds in the limitN →∞ within
its aging range. This expectation is derived from the inspection of the distribution functions
of auto-correlation,P(C; τ, tw) with C(τ) = N−1 ∑

i Si(τ + tw)Si(tw), shown in figure 11.
At τ > tw, in contrast toP(Q; τ, tw), P(C; τ, tw) tends to become a Gaussian form whose
centre tends to approachC = 0. We therefore consider that equation (1c) holds since any
configuration att ′ = tw (<∞) in a ‘pure state’ is orthogonal to (separated far away from)
the configuration att = ∞, i.e. the lowest energy state of the ‘pure state’.

According to Barratet al [22], the above aging process of type I judging from
Q(τ + tw, tw) and with the WEB judging fromC(τ + tw, tw), is expected to appear, for
example, in a system having a ‘gutter’ in phase space. But our GQED scenario is also
compatible with the two characteristics. We only need a quite natural assumption that a
basin of attraction of a ‘pure state’ is infinitely large ifN = ∞. In fact our scenario is
more appropriate judging from the time evolution ofP(Q; τ, tw) already described above.
We may say that the energy structure in one ‘pure state’ is, instead of a ‘gutter’, a ‘funnel’
with an infinitely wide input mouth.

4.3. Dominant pure-states pictures

Finally, let us compare the three distribution functionsP(Q; τ ∼ terg, tw), P(q; t ' terg) and
PRSB(q) drawn in figure 10(c). HereP(q; t ' terg) andPRSB(q) (also those in figures 10(a))

and (b) are normalized as
∫ 1
−1P(q) dq = 2, differently from those in figure 3. The reason

for this normalization is that time evolution of the clones atτ ∼ terg(N, T ) (� tLerg(N, T ))

of present interest is almost confined in a part of phase space with a common time-reversal
symmetry, i.e. it is in equilibrium with time-reversal symmetry breaking. (A small weight
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of P(Q; τ, tw) smearing out toQ < 0 is considered due to the finite-size effect.) It is rather
surprising that near coincidence,P(Q; τ ∼ terg, tw) ' P(q; t ' terg(N, T )) ' PRSB(q),
holds forQ, q & 0.3. (To be more accurate, near equalityP(q; t) ∼= PRSB(q) for all q is
obtained only att larger thantLerg(N, T ) as seen in figure 3 and in the previous work [20].
By ‘near coincidence’ here we disregard a quantitative difference in the weights associated
with the peak atQ, q ' qEA as well as a qualitative difference in the shapes atQ, q . 0.3.)

The near coincidenceP(Q; τ ∼ terg, tw) ' PRSB(q) alone indicates that the organization
of states in one ‘pure state’ centred at the lowest energy state (S∞ in figure 8) is similar
to that of the whole phase space with a common time-reversal symmetry which gives rise
to PRSB(q). The other near coincidenceP(Q; τ ∼ terg, tw) ' P(q; t ' terg) tells us more
since its r.h.s. quantity is the overlap between two configurations which start from random
initial configurations independently chosen. Its plausible interpretation that we can think
of is that a basin of attraction of one ‘pure state’ reached by our simulation in fact covers
almost an entire phase space with a common time-reversal symmetry. This is what we have
called the dynamic dominant pure-states picture in section 1. The near coincidence of the
three distribution functions indicates that the free-energy landscape searched by the present
simulation at aroundt, τ ∼ terg(N, T ) nearly coincides with that in equilibrium which is
described by the static dominant pure-states picture [25]. In other words, it is a direct
confirmation of the latter picture by means of the straightforward MC simulation. It is also
noted that the argument here is for the time range oft, τ ∼ terg(N, T ), which may not
directly correspond to the recent arguments on the analogous similarity between dynamic
(aging) properties in the whole aging range and static ones [5, 35].

5. Conclusion

We have proposed the scenario that aging processes at a fixedT in the SK model,
which are observed in the aging range oftq.e. . t . terg(N, T ), are growth processes
of quasi-equilibrium domains, or stochastic dynamics of the system looking for lower and
lower energy states, and finally for dominant pure states which exhaust the probability
weights in equilibrium. It qualitatively explains most of our simulated results. In our
arguments extensive energies of states (solutions of the TAP equation), which are represented
schematically by the ordinate of figure 8, and which govern relative Boltzmann weights in
each quasi-equilibrium domain, play a central role. If, however, we want to know more
details on the aging phenomena, such as an explicit functional form ofC(τ + tw, tw), we
have to analyse the organization of the states in the direction of the abscissa of figure 8.

We have also argued that there are the following five time ranges in relation to
aging phenomena in the SK model of finite sizes: the initial transient range—tq.e.—
the early stage of the aging range—tFerg(N, T )—the latest stage of the aging range—
terg(N, T )—the equilibrium range with time-reversal symmetry breaking—tLerg(N, T )—
completely equilibrated range, wheret denotes a crossover time between the corresponding
two time ranges. Atτ & terg(N, T ) the time-translational invariance inC(τ + tw, tw) is
ascertained. It is then natural to consider that the limiting procedure limN→∞ limt ′→terg(N,T )

in the present simulation corresponds to the one limt ′→∞ limN→∞ in the recent analytical
theories. In fact by this interpretation the present results are consistent qualitatively with
asymptotic behaviour of some of the basic assumptions and their results in the latter [5]. A
further interesting observation is that the apparent FDT, as shown in figure 7, holds even
for finite tw (< terg(N, T )), although in the limited range ofτ . It is considered important in
analyses of actual experimental results, whosetw (or t ′) by no means reaches to the literal
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asymptotic limitt ′ → ∞ by our above interpretation.
The two stages of the aging range are the early one specified by the condition

EB(t) � 1E(t) and the latest one byEB(t) � 1E(t), whereEB(t) and 1E(t) are
the effective barrier energy and the extensive energy relative to the equilibrium value,
respectively. This division has been introduced expecting that in the latest stage aging
phenomena affect by the finite-size effect and dominated by thermal activated processes are
seen. Within the accuracy of the present analysis, however, no significant differences have
been found in aging phenomena in the two stages (figures 1(c), 4, 6, and 7). It means that the
nature of aging processes in the early stage, occurring through higher energy states whose
Boltzmann weights in equilibrium are negligibly small, is not significantly different from
that in the latest stage, occurring within the lowest energy states which nearly reproduce
Parisi’s overlap function in equilibrium. It may be related to the similarity between dynamic
(aging) properties and static ones pointed out by the recent analytical theories [5, 35]. This
problem is certainly one of the most challenging problems to be investigated further.
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